Distributional Footprints of Deceptive Product Reviews

نویسندگان

  • Song Feng
  • Longfei Xing
  • Anupam Gogar
  • Yejin Choi
چکیده

This paper postulates that there are natural distributions of opinions in product reviews. In particular, we hypothesize that for a given domain, there is a set of representative distributions of review rating scores. A deceptive business entity that hires people to write fake reviews will necessarily distort its distribution of review scores, leaving distributional footprints behind. In order to validate this hypothesis, we introduce strategies to create dataset with pseudo-gold standard that is labeled automatically based on different types of distributional footprints. A range of experiments confirm the hypothesized connection between the distributional anomaly and deceptive reviews. This study also provides novel quantitative insights into the characteristics of natural distributions of opinions in the TripAdvisor hotel review and the Amazon product review domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic detection of deceptive opinions using automatically identified specific details

Distinguishing deceptive opinions — that is, fabricated views disguised to be genuine — from honest opinions is a hard problem. Deceptive opinions can include things like the false expression of a controversial opinion, a misleading review of an item or service bought online, or deceitful interviews. Unlike many tasks involving language, detecting deceptive opinions through text alone turns out...

متن کامل

Detecting Deceptive Opinions with Profile Compatibility

We propose using profile compatibility to differentiate genuine and fake product reviews. For each product, a collective profile is derived from a separate collection of reviews. Such a profile contains a number of aspects of the product, together with their descriptions. For a given unseen review about the same product, we build a test profile using the same approach. We then perform a bidirec...

متن کامل

Detecting Deceptive Opinion Spam Using Human Computation

Websites that encourage consumers to research, rate, and review products online have become an increasingly important factor in purchase decisions. This increased importance has been accompanied by a growth in deceptive opinion spam fraudulent reviews written with the intent to sound authentic and mislead consumers. In this study, we pool deceptive reviews solicited through crowdsourcing with a...

متن کامل

Online Deception Detection Refueled by Real World Data Collection

The lack of large realistic datasets presents a bottleneck in online deception detection studies. In this paper, we apply a data collection method based on social network analysis to quickly identify highquality deceptive and truthful online reviews1 from Amazon. The dataset contains more than 10,000 deceptive reviews and is diverse in product domains and reviewers. Using this dataset, we explo...

متن کامل

TopicSpam: a Topic-Model based approach for spam detection

Product reviews are now widely used by individuals and organizations for decision making (Litvin et al., 2008; Jansen, 2010). And because of the profits at stake, people have been known to try to game the system by writing fake reviews to promote target products. As a result, the task of deceptive review detection has been gaining increasing attention. In this paper, we propose a generative LDA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012